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1 Problem

A coin is flipped n times with probability p of being heads. This experiment is repeated k times. We
keep only those replications that have at least m heads after the first j flips. This selected subset of
replications is used for all subsequent analyses.

1. Let NH denote the total number of heads in n flips for a replication. Considering only the selected
subset of replications (those with at least m heads in the first j flips):

(a) What is the expected value of NH?

(b) Determine the probability distribution (i.e., the probability mass function) of NH .

2. The overall process of n flips can be viewed as a 1D random walk. If we associate a Head (H) with a
step of +1 and a Tail (T) with a step of −1, the position after kflips flips is Skflips

= Hkflips
−Tkflips

.
Given that Hkflips

+Tkflips
= kflips (where Hkflips

is the number of heads and Tkflips
is the number

of tails in kflips flips), the position can also be expressed as Skflips
= 2Hkflips

− kflips. A ”zero-
crossing” event occurs at the first flip k∗ > j such that Sk∗ = 0.

(a) Prove that for a zero-crossing event to occur (i.e., Sk∗ = 0), the flip number k∗ must be an
even integer.

(b) Let t∗ = k∗− j denote the number of additional flips after the j-th flip until this event occurs.
What is the probability of such a zero-crossing occurring after the j-th flip and up to (and
including) the n-th flip (i.e., j < k∗ ≤ n)?

3. Now, further restrict the analysis. From the subset of replications selected based on the properties
of the first j flips, consider only those that also exhibit such a zero-crossing (where Sk∗ = 0 for the
first time with j < k∗ ≤ n). For this specific group of iterations:

(a) What is the expected value of t∗ (the number of additional flips after j until this first zero-
crossing)?

(b) What is the distribution of t∗?

The random walk formulation presented, based on coin flips, offers a framework for modeling asset
price movements and evaluating potential trading signals. In this analogy, a ’Head’ signifies an upward
price movement and a ’Tail’ a downward one. The core condition of this study, selecting replications
with at least m heads in the first j flips for all subsequent analyses, is akin to identifying an asset that
has exhibited a strong initial directional signal, or an ’overextension’. If such an initial signal results
in a significant positive displacement (where the position Sj = 2Hj − j is high), a subsequent ’zero-
crossing’ event (where Sk∗ = 0, with k∗ > j) would signify a complete reversion of this initial trend.
This scenario is of particular interest for contrarian investment strategies, which capitalize on the premise
that strong market moves in one direction are often followed by a corrective move (i.e., mean reversion).
The quantitative exploration undertaken in this project, specifically determining the probability of such a
zero-crossing occurring after the j-th flip and the expected number of additional flips (t∗) until this event
[see Problem 2b and 3a], can therefore provide valuable measures for assessing the potential viability
and timing characteristics of contrarian positions taken against such initial market overextensions.
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2 Solution

Let NH be the total number of heads in n flips, NH,j be the number of heads in the first j flips, and
NH,n−j be the number of heads in the flips from j+1 to n. Let p be the probability of heads for a single
flip. The experiment considers only replications where the condition C : NH,j ≥ m is met.

1. Expected Value and Distribution of Total Heads NH

a. Expected number of heads after n flips

This calculation is independent of the random walk interpretation used for later parts. The expected
number of heads after n flips, conditional on C, is:

E[NH | C] = E[NH,j | C] + E[NH,n−j | C]

The number of heads in the n− j flips after the first j flips (NH,n−j) is independent of the first j flips.
Thus, E[NH,n−j | C] = E[NH,n−j ] = (n− j)p. The term E[NH,j | C] is the conditional expectation of a
binomial random variable X ∼ B(j, p), given X ≥ m:

E[NH,j | NH,j ≥ m] =

∑j
x=m x

(
j
x

)
px(1− p)j−x∑j

i=m

(
j
i

)
pi(1− p)j−i

Therefore, the total expected number of heads is:

E[NH | NH,j ≥ m] =

∑j
x=m x

(
j
x

)
px(1− p)j−x∑j

i=m

(
j
i

)
pi(1− p)j−i

+ (n− j)p

b. Distribution of the total number of heads after n flips

We want to find the probability mass function P (NH = h | C) for h ∈ [m,n].
We have NH = NH,j +NH,n−j .

P (NH = h | C) =
P (NH = h and C)

P (C)

The denominator is P (C) = P (NH,j ≥ m) =
∑j

i=m

(
j
i

)
pi(1− p)j−i.

The numerator is P (NH,j +NH,n−j = h and NH,j ≥ m). Let X = NH,j and Y = NH,n−j .

P (X + Y = h and X ≥ m) =
∑
x

P (X = x and Y = h− x and x ≥ m)

Since X and Y are independent, P (X = x, Y = h − x) = P (X = x)P (Y = h − x). The sum is over x
such that m ≤ x ≤ j (for X = x and X ≥ m) and 0 ≤ h − x ≤ n − j (for Y = h − x). The conditions
for x are: max(m,h− (n− j)) ≤ x ≤ min(j, h).

P (X = x)P (Y = h− x) =

[(
j

x

)
px(1− p)j−x

] [(
n− j

h− x

)
ph−x(1− p)(n−j)−(h−x)

]
=

(
j

x

)(
n− j

h− x

)
ph(1− p)n−h

So, the numerator becomes ph(1− p)n−h
∑min(j,h)

x=max(m,h−(n−j))

(
j
x

)(
n−j
h−x

)
. Therefore, the conditional distri-

bution of NH is:

P (NH = h | NH,j ≥ m) =
ph(1− p)n−h

∑min(j,h)
x=max(m,h−(n−j))

(
j
x

)(
n−j
h−x

)∑j
i=m

(
j
i

)
pi(1− p)j−i

This distribution is defined for h ∈ [m,n].

2. Zero-Crossing Properties

As defined in Problem 2, the random walk position is Skflips
= 2Hkflips

− kflips. A zero-crossing event
occurs at the first flip k∗ > j such that Sk∗ = 0.
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a. Proof that k∗ for a zero-crossing must be even

Proof. Let k∗ be the flip number at which a zero-crossing event occurs. The state of the random walk
at this flip is Sk∗ = Hk∗ − Tk∗ , where Hk∗ is the number of heads and Tk∗ is the number of tails in the
first k∗ flips. The total number of flips is k∗, so: Hk∗ + Tk∗ = k∗.

A zero-crossing event means Sk∗ = 0. Thus, Hk∗ − Tk∗ = 0, which implies Hk∗ = Tk∗ . Substituting
Tk∗ = Hk∗ into the equation for the total number of flips: Hk∗ +Hk∗ = k∗ 2Hk∗ = k∗ Since Hk∗ (the
number of heads) must be an integer, k∗ must be an integer multiple of 2. Therefore, k∗ must be an even
integer.

b. Probability of a zero-crossing after the j-th flip

Let t∗ = k∗− j be the number of additional flips after the j-th flip until the zero-crossing. Since k∗ must
be even (from 2a), and k∗ = j + t∗, then t∗ must have the same parity as j. The maximum value for t∗

is n− j.
The state of the walk after j flips is Sj(x) = 2x− j, where x = NH,j . The analysis is conditional on

NH,j ≥ m. Let q(x) be the PMF of NH,j given this condition:

q(x) = P (NH,j = x | NH,j ≥ m) =

(
j
x

)
px(1− p)j−x∑j

i=m

(
j
i

)
pi(1− p)j−i

for m ≤ x ≤ j

We seek the first t∗ ∈ [1, n− j] such that a random walk of t∗ additional steps, starting effectively from
Sj(x), reaches overall state 0. This is equivalent to a standard 1D random walk starting at Y0 = 0 that
first reaches target state Ax = −Sj(x) = j − 2x at step t∗.

Let g(t′, A) be the probability that such a 1D random walk, starting from 0, first reaches state A at
step t′.

• If A ̸= 0: g(t′, A) = |A|
t′

(
t′

(t′+A)/2

)
p(t

′+A)/2(1− p)(t
′−A)/2. This is non-zero if t′ ≥ |A|, and t′ and A

have the same parity.

• If A = 0 (requiring j to be even, x = j/2, and x ≥ m): g(2N, 0) = 2
N

(
2N−2
N−1

)
(p(1− p))N for N ≥ 1.

g(t′, 0) = 0 if t′ is odd or t′ < 2.

Let PZ(x) be the probability of a zero-crossing occurring with 1 ≤ t∗ ≤ n− j, given NH,j = x:

PZ(x) =

n−j∑
t∗=1

g(t∗, Ax) =

n−j∑
t∗=1

g(t∗, j − 2x)

The sum respects the conditions for g(t∗, j−2x) to be non-zero. The overall probability of a zero-crossing,
PZ , is:

PZ =

j∑
x=m

q(x)PZ(x) =

j∑
x=m

q(x)

(
n−j∑
t∗=1

g(t∗, j − 2x)

)
If PZ = 0, the conditional quantities below are not well-defined.

3. Analysis conditional on zero-crossing

We assume PZ > 0 and consider only replications that exhibit a zero-crossing Sk∗ = 0 for the first time
with j < k∗ ≤ n.

a. Expected value of t∗

E[t∗ | crossing j < k∗ ≤ n] =
1

PZ

j∑
x=m

q(x)

(
n−j∑
t∗=1

t∗ · g(t∗, j − 2x)

)

b. Distribution of t∗

For τ ∈ [1, n− j] (and τ having the same parity as j):

P (t∗ = τ | crossing j < k∗ ≤ n) =
1

PZ

j∑
x=m

q(x) · g(τ, j − 2x)
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3 Theoretical Result vs. Empirical Simulation

Parameters: kreplications = 700, 000; n = 250; p = 0.5; m = 8; j = 10.

1. Expected Value and Distribution of Total Heads NH

a. Expected number of heads after n flips

E[NH,j | NH,j ≥ 8] =
460

56
≈ 8.2143

(n− j)p = (250− 10)× 0.5 = 120

E[NH | NH,j ≥ 8] ≈ 8.2143 + 120 = 128.2143

Empirically Simulated Result:

• Expected number of heads: 124.9968

• Variance of number of heads: 62.4472

• Standard deviation of number of heads: 7.9024

• 95% confidence interval for number of heads: (109.5082, 140.4854)

b. Distribution of the total number of heads after n flips For h ∈ [8, 250]:

P (NH = h | NH,j ≥ 8) =
(0.5)240

56

min(10,h)∑
x=max(8,h−240)

(
10

x

)(
240

h− x

)

Example for h = 8: The sum is
(
10
8

)(
240
0

)
= 45.

P (NH = 8 | NH,j ≥ 8) =
(0.5)240 × 45

56

4



2. Zero-Crossing Properties

a. Proof that k∗ for a zero-crossing must be even: The proof provided in the general solution
(Section 2.a) applies directly. Since Sk∗ = 2Hk∗ − k∗, if Sk∗ = 0, then k∗ = 2Hk∗ , which must be even.

b. Probability of a zero-crossing PZ : q(8) = 45
56 , q(9) = 10

56 , q(10) = 1
56 . A8 = −6, A9 = −8,

A10 = −10. (All non-zero, so g(t′, 0) case is not used for these Ax).

g(t′, A) =
|A|
t′

(
t′

(t′ +A)/2

)
(0.5)t

′

t∗ must be even. Max t∗ = 240.

PZ(8) =

240∑
t∗=6,t∗even

6

t∗

(
t∗

(t∗ − 6)/2

)
(0.5)t

∗

PZ(9) =

240∑
t∗=8,t∗even

8

t∗

(
t∗

(t∗ − 8)/2

)
(0.5)t

∗

PZ(10) =

240∑
t∗=10,t∗even

10

t∗

(
t∗

(t∗ − 10)/2

)
(0.5)t

∗

PZ = q(8)PZ(8) + q(9)PZ(9) + q(10)PZ(10)

These sums require numerical computation. PZ is expected to be high.

Numerically Computed Theoretical Solution: Probability of zero-crossing PZ = 0.679436

Empirically Simulated Result:

• Number of zero crossings: 25916

• Percentage of zero crossings: 67.94431481530032%

• Number of non-zero crossings: 12227

• Percentage of non-zero crossings: 32.05568518469968%

3. Analysis conditional on zero-crossing

a. Expected value of t∗

E[t∗ | crossing by 240 steps] =
1

PZ

10∑
x=8

q(x)

 240∑
t∗=|Ax|,t∗even

t∗ · g(t∗, Ax)


Requires numerical evaluation of PZ and the inner sums.

Numerically Computed Theoretical Solution:
E[t∗ | crossing] = 65.7955 ⇒ E[k∗ | crossing] = 75.7955

Empirically Simulated Result:

• Expected value of the first-crossing-position: 75.47646241703967

• Variance of the first-crossing-position: 3287.6610835805836

• Standard deviation of the first-crossing-position: 57.33812940426801

• 95% confidence interval for the expected value: (-36.91, 187.86)
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b. Distribution of t∗ For τ ∈ [1, 240] (τ even):

P (t∗ = τ | crossing by 240 steps) =
1

PZ

10∑
x=8

q(x) · g(τ,Ax)

Example for τ = 10: Numerator N(τ = 10) ≈ 0.022599.

P (t∗ = 10 | crossing by 240 steps) ≈ 0.022599

PZ
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